201

77'

A155755

LABORATORY TECHNICAL REPORT

NO. 13091

DEVELOPMENT OF A HIGH STRENGTH

ISOTHERMALLY HEAT-TREATED NODULAR IRON

ROAD WHEEL ARM

CONTRACT No DAAE07-83-C-R051

Alan R. Moore and Larry Geer Hayes-Albion Corporation Albion Division 601 North Albion Street Albion, MI 49224

by _____

Approved for Public Release Distribution Unlimited.

20020723199

U.S. ARMY TANK-AUTOMOTIVE COMMAND RESEARCH AND DEVELOPMENT CENTER Warren Michigan 18207-5000

Warren, Michigan 48397-5000

Reproduced From Best Available Copy

AN. 46 864

NOTICES

The findings in this report are not to be construed as an official Department of the Army position.

Mention of any trade names or manufacturers in this report shall not be construed as an official endorsement or approval of such products or companies by the US Government.

Destroy this report when it is no longer needed. Do not return to the originators.

	REPORT DOCUM	MENTATION F	PAGE		
1a. REPORT SECURITY CLASSIFICATION Unclassifi	ed	1b. RESTRICTIVE I	MARKINGS None	:	
2a. SECURITY CLASSIFICATION AUTHORITY TACOM		3. DISTRIBUTION / Appro	AVAILABILITY OF ved for Pub		ease:
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE	Di	stribution (Jnlimit	ed
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING O	DRGANIZATION RE	PORT NUN	ΛBER(S)
6a. NAME OF PERFORMING ORGANIZATION Hayes-Albion Corp. Albion Division	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO US Army	NITORING ORGAN Tank-Automo		mma nd
6c. ADDRESS (City, State, and ZIP Code) 601 North Albion Street, Alb	ion, MI. 49224	7b. ADDRESS (City War	ren, MI 4809		
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATIO	ON NUMBER
TACOM	AMSTA-RC		No. DAAE07	-	051
8c. ADDRESS (City, State, and ZIP Code)			UNDING NUMBER		
Warren,MI 48397-5000		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
11. TITLE (Include Security Classification)	·	<u>I </u>			
_ Development of a High Stren	gth Isothermally	Heat -T reate	d Nodular II	ron Roa	d Wheel Arm
12. PERSONAL AUTHOR(S) Alan R. Moo	re & Larry Geer,	Hayes Albio	n Corp.		
13a. TYPE OF REPORT 13b. TIME CO	overed r 83 to Mar 85	14. DATE OF REPO 85-3-3	RT (Year, Month, L	Day) 15.	PAGE COUNT
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES	18. SUBJECT TERMS (C	Continue on reverse	if necessary and	identify b	y block number)
FIELD GROUP SUB-GROUP		itic Ductile	Iron. ADI	= Aust	empered Ductile
	Iron.		40.		
19. ABSTRACT (Continue on reverse if necessary	and identify by block r	umber)			
This contract was awarded to investigate the use of isothermally heat-treated nodular iron as a material for tank road wheel arms. The aim is to make a unit that is appropriate to the application while weighing significantly less and is less costly. Design considerations are discussed and the material characterized. Both static and dynamic tests are performed. The stress analysis is documented.					
£		;			
·*					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS	RPT. DTIC USERS		CURITY CLASSIFIC	ATION	
22a. NAME OF RESPONSIBLE INDIVIDUAL AVERY H. Fisher			include Area Code 467		FICE SYMBOL TA –R SC

		•
;		- ·
	a distribution di servicio di	and the first of the second of
	$(\mathbf{c}_{i},\mathbf{c}_{i}^{T})_{i}=(\mathbf$	Settle of the se
	(1, 1, 2, 4, 6, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	
		; ~
		$\phi^{\prime\prime}(\epsilon)$, $\phi^{\prime\prime}(\epsilon)$, $\phi^{\prime\prime}(\epsilon)$, $\phi^{\prime\prime}(\epsilon)$

PREFACE

This final report covers work done under Contract No DAAE07-83-C-R051, titled "Development of a High Strength Isothermally Heat-Treated Nodular Iron Road Wheel Arm." The report spans March 1983 through March 1985.

The contract was awarded to Hayes-Albion by the US Army Tank Auto-motive Command (TACOM). It was carried out under the technical direction of Michael Holly and later Avery H.Fisher, TACOM, Warren MI.

The project activities were under the technical guidance of A.R. Moore, experimental engineer. Hayes-Albion. The project was under the general direction of James Paternoster, technical director, Hayes-Albion Corp., Albion Division. Stress analysis and testing was under the direction of Lary Geer, corporate special projects engineer, Hayes-Albion Corp. Other areas of assistance were given by James Falconer, manager, tool engineering, Hayes-Albion and Nick Januszewski, sales engineer, Hayes-Albion Corp.

THIS PAGE LEFT BLANK INTENTIONALLY

TABLE OF CONTENTS

Section			Page
1.0.		RODUCTION	11
2.0.	OBJ	ECTIVE	11
3.0.	CON	CLUSIONS	11
4.0. 4.1. 4.1.1 4.1.2. 4.2.	Des Mate Con	OMMENDATIONS	11 11 11 13
5.0. 5.1. 5.2. 5.4.1. 5.4.2. 5.4.5. 5.5.5.5. 5.5.5.5. 5.5.5. 5.5.5. 5.5.5. 5.5.5. 5.5.5. 5.	Matchar Character Add Discons Secons Secons Ana	CUSSION	34 34 34 34 34
APPENDI X	Α	Comparative Stress Analysis Calculations on Three Different Design Cross-Sections	 A1
APPENDIX	В	Effect of varying Quench Temperature and Time on Mechanical Properties	ВІ
APPENDIX	C	Photomicrographs of BDI Structures at Different Quench Temperatures	C1

	Temperature Characterization Of BDI from -60°F to 230°F	Dì
	Effect of High Molybdenum and Re-Heat-treatment on Mechanical Properties	ΕÌ
APPENDIX F	First Static Experimental Stress Analysis	F۱
DISTRIBUTION	LIST	ומ

LIST OF ILLUSTRATIONS

Figure	Title	Page
1-1	Isothermally Heat-Treated Nodular Iron Road Wheel Arm	12
5-1	Sketch of Cast Road Wheel Arm	17
5-2	Test Bar Keel Block	21
5-3	Sketch Showing Arrangement of Apparatus to Obtain Temperature Characterization	23
5 - 4	Bar Chart Showing Various Mechanical Properties	24
5-5	Time-Temperature Diagram	25
5-6	Pattern Equipment Used to Produce Road Wheel Arm	27
5-7	Core Boxes Used to Produce Road Wheel Arm	28
5 - 8	First Static Test Setup	29
5-9	Graph of Readings	30
5-10	Second Static Test Setup	32
5-11	Fracture of First Dynamic Test Arm	35
5.12	Position of Rosett Strain Gages	38

THIS PAGE LEFT BLANK INTENTIONALLY

LIST OF TABLES

Table	TITLE	Page
4-1a.	Chemistry of Contracted 14 Road Wheel Arms	14
4-1b.	Chemistry of Metal Poured in Characterization Test Bars	14
4-1c.	Chemistry of Second Static Test Casting	14
4-1d.	Chemistry of Third Static and Second Dynamic Test Specimen	14
4-le.	Chemistry of High Molybdenum Test Bars	14
5-1.	Commercial Designations of Nodular Irons and Their Mechanical Properties	15
5-2.	Comparative Stress Analysis of Arm Cross- Section Considered in Simple Bending	18
5-3.	Comparative Stress Analysis of Arm Cross- Section Considered in Bending at 14 Degrees to Normal	19
5 - 4	Test Bar Results from BDI with Chemistry Shown in Table 4-1c	31
5-5	Second Static Test Strain Gage Results	33
5 - 6	Test Bar Results of BDI in Second Dynamic Test Specimen	36
5-7	Readings from Rosett Strain Gages, Second Dynamic Test	37

THIS PAGE LEFT BLANK INTENTIONALLY

1.0. INTRODUCTION

This final report was prepared by Hayes-Albion Corp. for the US Army Tank-Automotive Command under Contract No DAAE07-83-C-R051. It describes the redesign, material characterization, material selection, manufacture, and testing of a proposed road wheel arm for the MI tank. The material selected is bainitic ductile iron (BDI). This material made by the casting process and heat-treatment, takes advantage of the toughness of bainite (acicular ferrite), the ability of the casting process to make a complex shape, and a 10 percent lighter than steel weight. A further advantage is its relatively low cost compared to a steel forging. The part is shown in Fig. 1-1.

2.0. OBJECTIVE

The main objective of the project was to supply a road wheel arm of equal or better performance than the existing one, with a weight and cost reduction. A secondary objective was to conduct an investigation into BDI to characterize its properties over a broad range.

3.0. CONCLUSIONS

A set of 14 road wheel arms were made and assembled. Dynamic tests on the design passed the 650,000 cycle specification, going beyond one million cycles. A 35 pound or 27 percent weight savings per arm was achieved, and based on figures obtained during the project, a considerable cost reduction can be effected.

Data were generated during the investigation and characterization phase to allow design calculations to be made with more confidence.

4.0. RECOMMENDATIONS

4.1. Design

Figures obtained during the static and dynamic tests indicate that further refinement of the design should be done. This involves a redistribution of metal from areas of low stress to areas of high stress. Such a change would not affect the overall weight but would increase the safety factor.

4.1.1. Material Characterization. The material was characterized using one austenitizing temperature $(1650^{\circ}F)$ throughout, varying the quench temperatures and times. Investigation should be made

Fig 1-1. Isothermally Heat-Treated Nodular Iron Road Wheel Arm.

into varying the austenitizing temperatures as information on this comes to light.

4.1.2. Control. In the course of the investigation and testing, it was demonstrated that isothermally heat-treated nodular iron is quite notch sensitive. Every effort must be made to avoid grinding gouges on the outside of the casting. Likewise, no holes should be drilled in the casting for any reason. The manufacture of BDI is time-temperature-chemistry sensitive. Control must be close over these variables. Vendors bidding on future requirements should show that they routinely control their product metallurgically and that they can produce BDI to specification.

4.2. Further Recommendations

Castings made for this project had a ladle addition of Molybdenum (see Table 4-la). It would be advantageous to further characterize the material through varying key elements such as carbon, silicon, copper, manganese, and molybdenum. An important field of study has been shown by the present project: the cause of notch sensitivity should be found and if possible methods of preventing it should be provided.

Two spacers on the assembly are presently made from forgings. These could be made from pearlitic ductile iron at much lower cost.

5.0. DISCUSSION

5.1. Background

Nodular or ductile iron is a readily available material whose manufacture is well understood by many foundries. In the as-cast condition, unalloyed nodular iron is made to several specifications (see Table 5-1). Alloyed primarily with copper, nickel, and molybdenum, it can be tailored to many specific applications in the normal to high temperature ranges. Unfortunately, it shares to a greater degree than specialty steels the tendency to lose strength at low temperatures. Isothermal heat-treatment not only improves the as-cast mechanical properties but significantly improves them at low temperatures to where they can compete with cryogenic steels.

5.1.1. Hayes-Albion made an unsolicited proposal to TACOM suggesting that BDI be investigated as a material suitable for tank road wheel arms. Mentioned in the proposal were the potential mechanical properties which could be in excess of 200,000 p.s.i. tensile strength, 180,000 p.s.i. yield strength and 10 percent elongation. These properties could be adjusted in the heat-treatment to produce optimum conditions for the application. Advantages cited were ease of manufacture, cost and weight reduction.

Table 4-la. Chemistry of Contracted 14 Road Wheel Arms.

TI 0.0269
NL 0.019
M0 0.2602
P 0.336
SN 0.015
AL 0.0103
CE 0.001
cu 0.16
CR 0.042
MG N/A
s 0.008
MN 0.33
SI 2.38
c 3.76

Table 4-1b. Chemistry of Metal Poured in Characterization Test Bars.

Ξ	0.019
¥	0.013
W W	0.0079
a	0.253
SN	0.01
AL	0.0043
벙	0
3	0.10
8	0.052
Æ	N/A
S	0.011
Σ	0.3
SI	2.29
ပ	3.76

Table 4-1c. Chemistry of Second Static Test Casting.

Chemistry of Third static and Second Dynamic Test Specimen. Table 4-1d.

Table 4-le Chemistry of High Molybdenum Test bars.

Table 5-1. Commercial Designations of Nodular Iron and Their Mechanical Properties.

Commercial Name	Tensile p.s.i.	Yield p.s.i.	Elongation percent
D4018	60,000	40,000	18
D4512	65,000	45,000	12
D5506	80,000	55,000	6
D7003	100,000	70,000	3
D 9002	120,000	90,000	2

5.2. Rationale

Using BDI for a tank road wheel arm is a good application for the following reasons:

- o The material is readily available.
- o The material is less energy intensive than a forging.
- o The product is a critical member and, as a casting, would be in a lower energy state than a forging.
- o The material weighs approximately 10 percent less than steel.
- o through the casting process, the part can be redesigned to increase the section modulus, put material where it is needed, and by design, reduce weight.

5.3. Design

Design of the original road wheel arm was done by General Dynamics Corporation. It was designed in 4150H or 4340H forged steel hardened to Rc 35-39. The part is simply two hubs joined by an oval sectioned offset arm (see Fig 5-1). In redesigning the part in BDI, it was specified that the plan and elevation envelopes were not to be exceeded. No stress values were available. All that could be obtained was the weight of the vehicle at 60 tons. Using this dead weight, we then examined three possibilities:

- o The existing oval section.
- o An "I" beam section.
- o A box section.

These sections were surveyed in a comparative manner and the results shown in tables 5-2 and 5-3. APPENDIX Al through A 16 contains the details on these calculations. For comparison reasons the stresses were calculated under the following assumptions: (1) A beam of constant cross-section 20 ins. long. (2) For bending stress about the X axis a 20,000 pound verticle load was used. (3) For bending about the Y axis a 5,000 pound load was used. (4) The shear stress calculations were performed using a pure torque of 245,000 in. pounds. These stresses are for cross-section comparison on only. This method was utilised based on the limited load and restraint information These values are not to be construed to be actual infield values. In Table 5-2 the existing section is first considered. The offset in the arm results in a torque being present as well as a bending moment. We must design particularly and with emphasis for

Fig. 5-1. Sketch of Cast Road Wheel Arm

Comparative Section Analysis and Corresponding Stresses of Arm Cross-Sections. in Simple Bending. 5-2

Cross-Section Design	Area	<u>×</u>	_>	J Polar Moment	Wt. lbs per in. Section	۲Iک	ρ.s.i.	ρ. s. · i .
APPENDIX A3 Existing Oval Section	17.78	50.35	12.15	62.49	4.62	0.284	25,319	14,403
APPENDIX A4	9.341	53.53	5.97	59.5	2.42	0.157	24,285	29,313
I Beam Sect. APPENDIX A5	11.75	65.43	9.07	74.5	3.06	0.157	19,868	19,294
APPENDIX A6	13.0	60.78	7.17	68.0	3.38	0.191	21,388	24,407
APPENDIX A7	13.125	70.27	10.84	81.11	3.41	0.162	18,500	16,143
APPENDIX A8	15.75	72.95	11.70	84.65	4.10	0.186	17,820	14,957
APPENDIX A9	13.125	70.27	14.81	85.08	3.41	0.154	18,500	918,11
APPENDIX A10	86.6	49.37	17.22	66.59	2.59	0.150	26,331	10,162
9/16 in. Wall APPENDIX All 5/8 in. Wall	10.93	52.96	18.24	71.2	2.84	0.153	24,546	9,594

Comparative Section Analysis and Corresponding Stresses of Arm Cross-Sections in Bending at 14 Degrees to Normal. Table 5-3

Cross-Section Design	Area	_×	, , , , , , , , , , , , , , , , , , ,	J Polar Moment	Wt. lbs per in. Section	۸۱٦	0 p.s.i.	0 p.§.i.	p.s.i.
APPENDIX A12 Existing Oval Section	17.87	48.14	14.82	62.96	4.62	0.282	26,506	12,429	15,670
APPENDIX A13 Beam Section 7/8 in. Flange 3/4 Webb	69.6	52.66	9.29	61.95	2.59	0.160	27,170	26,738	7,327
** APPENDIX A14	10.94	50.93	20.27	71.2	2.84	0.154	26,506	11,408	11,604
* Assumeg a half in.	half in.	radius o	n outside	radius on outside corners			-		

this torque as it is a crucial component of the stresses. For this reason the polar moment is of special interest. Having surveyed the present design cross-section we can regard that as a bogey because it is presently meeting the application. Other designs then should be measured against this design. The A/J column in the tables is simply a ratio of efficiency of material usage. The lower this value, the greater the efficiency. As can be seen from this data, a box section between 9/16 ins. and 5/8 ins. wall exceeds the oval section on all counts, is half the weight per design inch and has double the efficiency.

Table 5-3 considers the three basic shapes when acted upon by a bending moment applied at 14 degrees to normal (from information advanced by TACOM). Again the box section is clearly superior.

5.3.1 Using this information, a box section with an 0.625 in. wall was designed for the offset arm. Material was removed from around the end hubs where it appeared that these were over designed. (see Fig 5-1). The internal core for the box section is connected to the spindle hole cores so that a single core is used to make the complete casting.

5.4. Material Selection

- 5.4.1. Material Characterization. Concurrent with the design work, the issue of material characterization was worked on. Not only did this result in much needed information in general, but it also dictated the particular heat-treatment that would be used on the road wheel arms.
- 5.4.2. Characterization Method. Two hundred and fifty "keel block" tensile test bars and 500 charpy impact test bars were cast (see Fig. These were all cast in the same heat of iron with a routine ferritic iron chemistry, Table 4-1b. The reason for making them all from the same heat was to eliminate chemistry as a variable in this Since isothermally transformed nodular iron has a propensity to work harden because of the transformation of retained austenite to martensite at the interface, it was judged that machining the test bars after heat-treatment would skew the results. All bars were therefore machined prior to heat-treatment. The austenitizing tempwas maintained at 1650°F in every case and 25 tensile test bars and 50 charpy bars were processed at each quench temperature. austenitized bars were quenched at temperatures from 400°F to 800°F in 50°F increments. After one hour in the salt, 5 bars each of tensile and 10 of charpy were removed and rinsed off in water. a profile was obtained over 4 hours quench-soak time at one hour Austenitizing time was maintained at 3 hours at temperature in every case. The tensile bars were then pulled and the results The charpy bars, five notched and five unnotched were were recorded. impacted and the results were recorded. These data are shown graphic-Selected photomicrographs are shown in APPENDIX C. ally in APPENDIX B.

Fig. 5-2. Test Bar Keel Block. Test bars are cut from the two lower ribs and machined into standard $\frac{1}{2}$ in. diameter tensile bars.

- 5.4.3. Characterization at Temperature. The contract required that the material be characterized at temperatures from -60°F to 230°F. This was done by picking a quench temperature that resulted in an optimum of mechanical properties and processing 40 more tensile and 40 unnotched charpy bars at 700°F quench temperature. A thermocouple was welded to each bar and five bars were tensile tested or impacted at each temperature. The results of this study are shown in APPENDIX D. A sketch of the apparatus is shown in Fig 5-3.
- 5.4.4. Additional Trials. In the course of this investigation, two other trials were made. One was to look at the effects of austempering a second time on a group of bars where a furnace failure had interrupted the process, and a second was to see what effect molybdenum might have on the qualities of the material (Table 4-le). These results are shown in APPENDIX E.
- Discussion of Results As might be expected, the lower quench temperatures result in test bars with higher hardness values, while the higher quench temperatures give test bars with lower values. ation values, however, are the reverse of this, reaching nearly 10 percent at the 700°F quench. Tensile strengths of over 200,000 p.s.i. are easily obtainable in the 550°F quenches but elongation at this level is barely 5 percent. These relationships are clearly shown in the bar chart, Fig 5-4. The effect of low or high ambient temperatures is minimal at the temperatures investigated, indicating that if nodular iron is to be used at temperatures to -60°F, it should be austempered in the 700°F range for best results and safety. net result of this characterization is that isothermally heat-treated nodular iron can be tailored to many applications normally reserved for alloy steels and has cryogenic applications. On the negative side is the strong evidence, as indicated by the charpy notched bars, that the material is quite notch sensitive. Untill a method can be found to minimize this problem, every effort must be made in design to eliminate sharp angles and other stress raisers in a component. It is also essential that in the course of manufacturing, machining or grinding notches into a part must be avoided at all costs. treating parts does not appear to be advisable if optimum qualities are to be obtained. Even when austenitizing at the higher temperature of 1700°F, some loss in mechanical properties to the extent of 3-4 per-The addition of 0.4 percent molybdenum seemed to cent was found. have little effect except to make the point of optimum properties a little more critical with respect to time in the salt (at least in the standard test bar section). This is in contradiction to published literature.

5.5. Road Wheel Arm, Material Selection.

Using the material characterization data, a quench temperature of $650^{\circ}F$ was selected for the redesigned road wheel arms. Although the $700^{\circ}F$ temperature properties look better, it was thought that the mass of

Fig. 5-3. Sketch Showing the Arrangement of Apparatus to obtain Temperature Characterization.

Fig. 5-4. Bar Chart Showing the Relationships between the Various Mechanical Qualities.

Fig. 5-5. Time-Temperature Diagram Showing the Precipitious Nature of the Quench needed to Avoid the Pearlite Field.

the arm would behave in the quench as if it were at the higher temperature. It was also decided, in deference to published research, that 0.25 percent molybdenum would be beneficial in allowing for a little more time for the transition to be effected. It was thought that the box section of the arm would require that most of the temperature drop occur from the outside and anything that pushed the "nose" of the pearlite curve towards the right of the transformation diagram would be helpful (see Fig 5-5).

- 5.5.1. First Sample Road Wheel Arm. A plastic pattern and two half cast-aluminum core boxes were constructed (see Fig 5-6 and 5-7). First castings were sectioned to check for uniform wall thickness. Afterwards a casting was made for static testing. This casting was X-rayed for integrity and metallurgically approved. It was machined complete then isothermally heat-treated and assembled.
- 5.5.2. First Static Test. For the first static test, the arm was mounted on a special shaft that was attached to a circular mounting plate. This plate was doweled and bolted to the test bed in such a way that a force of 20,000 pounds could be applied to the spindle. From a brittle lacquer survey, 15 strain gage locations were chosen (se Fig 5-8). Loads in 1000-pound increments were applied to the spindle and the strain recorded. As shown in Fig 5-9, these strains have a straight line relationship. The complete results are shown in APPENDIX F.
- 5.5.3. Discussion of the Static Test Results. It was obvious from the pattern of strain that besides a bending moment in the arm, a torque was also at work. The combination of these forces contributed to high stresses in certain areas, particularly at the knee of the offset. It was then decided to redesign the arm, attempting to reduce some apparent stresses of up to 38,000 p.s.i. at 20,000 pounds load. The redesign was a smoother transition of the arm into the hubs and an increase in the internal radii. At this time, an additional request for dynamic testing came from TACOM and plans were made to do this.
- 5.5.4. Second Static Test. Having made modifications to the arm design a second cast was made. Chemistry and test bar results from keel blocks cast in the same molds are shown in Tables 4-1c and 5-4.
- 5.5.5. Second Static Test Arrangement. More information about the application and duty of the component was now made available. A test rig was made in which the arm was held rigidly by a splined shaft extending six inches from both sides of the arm. The arm was inclined 17 degrees to the vertical and 14 degrees off the perpendicular in that: plane. A load of 18,000 pounds was to be applied at 90 degrees to the spindle and 4,500 pounds normal to the spindle from the arm towards the wheel. This loading resulted in a load of 18,554 pounds being applied to the spindle at an angle of 14 degrees to the longitudinal centerline and away from the vehicle (se Fig 5-10). This figure shows the test setup with the load being applied as a pull towards the cylinder.

.-Fig. 5-6. Pattern Equipment used to produce the Road Wheel Arm.

Fig. 5-7. Core Boxes used to Produce The Road Wheel Arm
28

Fig.5-8 First Static Test Set-up. Comparison of the casting with the forging can be seen in this picture. Multiple strain gage attachment posts are shown in the lower right-hand corner.

Fig. 5-9. Graph of Readings from Highest Value Strain Gages
E = Young's Modulus of Elasticity. The value 24 X 106
was found experimentally during this project.

Table 5-4. Test Bar Results from BDI with the Chemistry Shown in Table 4-1c. This is questionable material.

Tensile p.s.i.	Yield p.s.i.	Elongation percent
165,000	135,000	2.5

Fig. 5-10. Second Static Test Set-up. This Set -up is also that Used for the Dynamic Testing.

Notice that the power cylinder is at a lateral as well as a longitudinal angle to the center line of the fixture

Table 5-5. Second Static Test Strain Gage Results

					<u> </u>	
LOAD	a	Str 3	ain Gage 2 Microi	Numbers 15 nches	12	11
1000	- 36	-46	-48	<u>1</u> 4	50	94
2000	- 75	-111	- 92	19	95	190
3000	-116	-117	-133	24	139	2 82
4000	-150	-23 5	- 173	2 9	179	3 67
5000	-187	-2 96	-214	34	222	456
6000	-2 25	- 360	-2 57	3 9	267	5 51
7000	-261	-419	-2 98	44.	308	640
8000	-3 00	- 483	-3 43	49	354	737
9000	- 337	-544	- 384	54	3 98	831
10000	- 370	-5 99	-424	5 9	436	914
11000	-4 07	-6 59	- 467	64	480	1007
12000	-446	-7 20	- 512	69	52 5	1103
13000	-482	- 778	- 554	74	567	1194
14000	- 518	-834	-5 96	79	609	1283
.15000	- 552	- 889	- 636	84	649	1369
16000	- 590	- 950	 682	90	695	1467
17000	-624	-1004	-722	95	736	1554
18000	- 660	-1061	- 765	100	7 78	1645
19000	- 697	-1120	-810	105	823	1740
20000	-721	- 1158	- 839	109	852	1804

- 5.5.6. Second Static Test Results. From a brittle lacquer survey, six strain gage sites were selected. These were approximately in the same positions as the first strain gage survey and were numbered accordingly. Table 5-5 shows the results.
- 5.5.7. First Dynamic Test Procedure. Initially a 20,000 pound capacity load cell was calibrated using a Satec Universal Test System and a Hewlett-Packard X,Y Plotter to record the calibrated curve. The load cell was then placed into a test apparatus which consisted of an MTS Testline 820 Structural Test System, a bolted down frame, and a tank arm assembly. With an upper limit of 19,600 pounds and a lower limit of 2,000 pounds, the arm was cycled at 2.5 hertz. Each day the load cell was shunt calibrated to correct any electronic drift that might have occured. The load cell's shunt calibration limits and the attenuator's displacement were recorded with a Gould brush recorder and documented. Failure of the arm occurred at 596,720 cycles against a 650,000 target.
- 5.5.8. Analysis of Failure. Fig. 5-11 illustrates the location of the fracture. It was determined that the fracture originated in the tapped hole, propagating across the area of high stress caused by the bending and torque moments. The substandard material compounded the failure.
- 5.5.9. Third Static Test. In anticipation of this failure, a second cast was made with an analysis shown in Table 4-1c . This is a base nodular iron with an addition of molybdenum. (note that the Mo addition is almost half the amount in the first dynamic test). Test bars from this heat gave the results shown in Table 5-6. This is excellent material, but in particular the elongation is twice that of the previous dynamic test specimens. This would indicate that Mo additions must be made with caution. Current thinking is that Mo should not exceed 0.25 percent. No holes were drilled in the arm. Two strain gage rosettes were attached in areas of high stress. The readings from these rosettes are shown in Table 5-7, with positions shown in Fig.5-12. The highest strain of 1,550 microinches translates to 37,200 p.s.i.
- 5.5.10. Second Dynamic Test. Dynamic testing began under the same conditions as explained in 5.5.7. At 1,037,620 cycles, the test was terminated. The tank arm was then removed from the apparatus and given a Magnaflux test to check for cracks. None was found.
- 5.5.11. Analysis of Second Dynamic Test. It is obvious from the foregoing results that the arm design and material are adequate for the application. Data now obtained would allow fine tuning of the design and add even further to the safety factor and life.
- 5.5.12. Manufacture of the 14 Contract Arms. The required completion

Fig. 5-11. Fracture of First Dynamic Test Arm. The Tapped hole was originally installed in order to allow a filler to be installed into the interior of the arm.

Table 5-6. Test Bar Results of BDI in Second Dynamic Test Specimen. This is excellent material.

Bar No.	Tensile p.s.i.	Yield p.s.i.	Elongation percent
1	195,400	165,000	5
; 2	196,600	163,400	6
3	193,900	163,300	4
4	196,400	166,800	5
5	194,800	167,500	5

Table 5-7. Readings from Rosett Strain Gages, Second Dynamic Test

ROAD WHEEL ARM STRAIN READINGS TEST #2

GAGES

	Upper Rosett				Lower F	Rosett
Load	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1K	83	40	5	66	33	- 32
2K	16Ø	79	10	106	67	-32 -40
3K	240	122	14	146	101	- 54
4K	318	162	20	186	136	-63
5K	394	2 Ø3	2 5	224	172	-73
6K	471	24 6	31	261	205	-84
7K	548	2 88	38	300	238	- 93
8K	6 26	331	45	337	2 72	-101
9K	7 Ø2	374	51	375	308	-11Ø
10K	7 8Ø	417	58	412	342	- 117
11K	8 59	460	64	451	375	- 126
12K	934	501	71	488	412	-131
13K	1013	544	77	527	448	- 139
14K	1090	586	83	567	483	- 144
15K	1166	631	9Ø	605	521	- 153
16K	1244	670	97	646	56Ø	- 157
17K	1322	713	106	687	5 98	- 166
18K	1398	75 5	110	72 8	634	- 173
19K	1474	7 99	117	77Ø	673	-173 -180
20K	1550	838	123	812	7 09	-187

Principal strains and their corresponding stresses were calculated based on a 20,000 pound load:

```
Upper Rosette: \[ \epsilon \text{Max} = 1,903 \] \[ \text{Min. per in.} \] \[ \epsilon \text{Min} = 229 \] \[ \text{Min} = 11,999 \] \[ \text{P.s.i.} \] \[ \text{Min} = 11,999 \] \[ \text{P.s.i.} \] \[ \text{Max} = 23,451 \] \[ \text{P.s.i.} \] \[ \text{Max} = 23,060 \] \[ \text{P.s.i.} \] \[ \text{P.s.i.} \] \[ \text{Max} = 18,060 \] \[ \text{P.s.i.} \] \[ \text{P.
```


Fig. 5-12. Position of Rosett Strain Gages. These gages are positioned so that one is normal and the other two are at an angle of 45 to No 1 and 90° to each other.

of the 14 arms was then completed without incident. The fact that the heat-treatment was done after machining required that an allowance be made for growth of 0.002 ins. per inch. Heating the arm in order to shrink the spindles in place was done by induction and held to a maximum of 400° F, the spindles being frozen to -100° F. An application of Loctite 620 was made to the inboard side of the splined spindle where it mates with the arm to seal off the spline from oil seepage. The weld called for on the outboard end of the splined spindle was done by heliarcing a silver solder into a "V". No metallurgical damage occurred as this was only a seal and not a structural weld.

THIS PAGE LEFT BLANK INTENTIONALLY

APPENDIX A

COMPARATIVE CALCULATIONS

ON

THREE DIFFERENT CROSS-SECTIONS

THIS PAGE LEFT BLANK INTENTIONALLY

GENERAL SECTION L FREA-17.78 Imax=50.35 Imin=12.15

Ąi

HAYES-ALBION CORPORATION SECTION FUNDLYSIS

COMPOSITE OF SECTIONS:

	Area=	17.7758		
CENTER OF GRAVITY:	G×=	-0.010	Gy=	0.049
INERTIA:	I ×=	50.3456	Iy=	12.1498
PRODUCT OF INERTIA:	Pxy=	-0.0715		
	Imax=	50.3457	Imin≖	12.1497 45
ANGLE:	0.11	(Deg)		- 17
File Name: T-ARM				7=1. 250
	HAY	'ES-ALBION C	ORPORATION	7=1: 7541
		SECTION AN	ALYSIS	-

COMPOSITE OF SECTIONS:

			Area=	9.3410			
CENTER	0F	GRAVITY:	G×=	0.000	Gy≖		0.000
		INERTIA:	I×=	<u>5</u> 3.5320	Iy=		_5.9738
PRODUCT	0F	INERTIA:	Pxy≠	0.0000			/
			Imax=	53.5320	'Imin=	•	5.9738
		ANGLE:	9.99	(Den)			

File Name:

HAYES-ALBION CORPORATION SECTION ANALYSIS

HRYES-ALBION CORPORATION SECTION ANALYSIS

COMPOSITE OF SECTIONS:

	Area=	11.7500		
CENTER OF GRAVITY:	G×=	0.000	Gy=	0.000
INERTIA:	I ×=	65.4323	Iy=	9.0729
PRODUCT OF INERTIA:	Pxy=	0.0000		
	Imax=	65.4323	Imin=	9.0729
ANGLE:	0.00	(Deg)		****

File Name: HAYES-ALBION

HAYES-ALBION CORPORATION SECTION ANALYSIS

HAYES-ALBION CORPORATION SECTION FINALYSIS

COMPOSITE OF SECTIONS:

. 7

12.9980

CENTER OF GRAVITY: Gx= 0.000 Gy= 0.000

INERTIA: Ix= 60.7775' Iy= 7.1738'

PRODUCT OF INERTIA: Pxy= 0.0000

Imax= 60.7775 Imin= 7.1738 \

ANGLE: 0.00 (Deg)

File Name: HMYES-ALEION COPPORATION

HAYES-ALBION CORPORATION SECTION ANALYSIS

HRYES-ALBION CORPORATION SECTION ANALYSIS

COMPOSITE OF SECTIONS:

	GRAVITY: INERTIA:	Area= Gx= Ix=	13.1250 0.000 70.2734	Gy= Iy=	0.000 10.8418
	INERTIA: ANGLE:	Pxy= Imax≈ 0. 00	0.0000 70.2734 (Deg)	Imin=	10.8418
File Name			· • ·		

HAYES-ALBION CORPORATION SECTION ANALYSIS

HRYES-ALBION CORPORATION SECTION ANALYSIS

COMPOSITE OF SECTIONS:

		Area=	15.7500		
CENTER OF	GRAVITY:	G×=	0.000	Gy=	0.000
	INERTIA:	I×=	72.9531	Iy=	11.7031
PRODUCT OF	INERTIA:	Pxy=	0.0000	•	
		Imax=	72.9531	Imin=	11.7031
File Names	ANGLE:	0.00	(Deg)		_ ·

File Name:

HAYES-ALBION CORPORATION SECTION ANALYSIS

HAYES-ALBION CORPORATION SECTION RNALYSIS

COMPOSITE OF SECTIONS:

	Area=	13.1250	
. CENTER OF GRAV	ITY: Gx=	-0.275 Gy=	0. 000
INER	RTIA: Ix=	70.2734 Iy=	14.8121
PRODUCT OF INER	RTIA: Pxy=	0.0000	
	Imax=	70.2734. Imin=	14.8121
1 n	IGLE: 0.00	(Deg)	265
File Name:		-	1=75,0565
	HAY	ES-ALBION CORPORATION) = \ · · · · · · · · · · · · · · · · · ·
		SECTION ANALYSIS	A

HRYES-ALBION CORPORATION SECTION ANALYSIS

COMPOSITE OF SECTIONS:

. .

CENTER OF PRODUCT OF	INERTIA:	Area= Gx= Ix= Pxy=	9.9814 9.000 49.3693 9.0000	Gy= Iy=	0.000 17.2170
File Name:	ANGLE:	Imax= 0.00	49 ,3693. (Deg)	Imin≠	17.2170
ille Hame;		HAY	ES-ALBION C	OPPOPATION	7-16.36
			SECTION AN	ALYSIS	9

HRYES-ALBION CORPORATION SECTION FUNDLYSIS

COMPOSITE OF SECTIONS:

CENTER OF PRODUCT OF	INERTIA:	Area= Gx≈ Ix≈ Pxy=	10.9375 0.000 52.9671 0.0000	Gy= Iy=	0.000 18.2406
File Name:	ANGLE:	0.00	52.9671 (Deg)	Imin=	18.2406 - H. 1769
		HAY	ES-ALBION C	ORPORATI	ACC. NO.

HRYES-ALBION CORPORATION SECTION ANALYSIS

COMPOSITE OF SECTIONS:

CENTER OF	INERTIA:	: Ix=	17.7756 -0.012 48.1413 -8.8441	Gy≈ Iy≈	0.047 14.8243
File Name:	ANGLE:	Imax= 13.98	50.3434 (Deg)	Imin≃ f	12.6222

HAYES-ALBION CORPORATION SECTION ANALYSIS

HRYES-ALBION CORPORATION SECTION ANALYSIS

COMPOSITE OF SECTIONS:

	F GRAVITY: INERTIA: F INERTIA:	Area= Gx= Ix= Pxy=	Gx= 0.000 Ix= 52.6658	Gy= Iy=	-0.000 -0.2921
File Names	ANGLE:	Imax≈ 13.99	55,5382 (Deg)	Imin=	6.4197

HAYES-ALBION CORPORATION SECTION ANALYSIS

HAYES-ALBION CORPORATION SECTION ANALYSIS

COMPOSITE OF SECTIONS:

		Area=	10.9370		
CENTER	F GRAVITY:	G×≈	0.000	Gy=	0.000
	INERTIA:	I×=	50. 9334	Iy=	20.2716
PRODUCT (F INERTIA:	Pxy≈	-8.1491	•	
		Imax=	52.9647	Imin=	18.2404
	ANCLE:	14 00	(Dog)		

File Name:

: :

HAYES-ALBION CORPORATION SECTION ANALYSIS

APPENDIX B EFFECT OF VARYING QUENCH TEMPERATURE

AND TIME

ON

MECHANICAL PROPERTIES

THIS PAGE LEFT BLANK INTENTIONALLY

B4

120

HARDNESS RC

В6

120

BIO

NOTE: Hardness shown is apparent or macro hardness.
Actual hardness as measured by Brinnell hardness tester will measure 5 to 7 points harder.

HARDNESS RC

120

NOTE: Hardness shown is apparent or macro hardness.

Actual hardness as measured by Brinnell hardness tester will measure 5 to 7 points harder.

LOT	BAR	QCH TTVF	YIELD	TENS.	ELONG.	Rc	Rc	вни	N - UN CHARPY	LENGTH	COMENT
LOT No. 100° 400°	No. 1 2 3 4 5 1 2 3 4 5 1 2 3	QCH TTHE ISMIN JANIA JHES	,000	51 46 51 24 77	Rath And	Re Macro 51 48 49 48 51 48 51 48 46 44 44	Micro	42°	CHARPY FE LID 41/2: 7 21/2 9 21/4-51/4 2-7 1/4-61/4 2-71/12 2-35/1 2-13(21/2-14	INCHES 6.9 2.33 (ii)	COMENT BAR CRACKED LENGTHW """ """ BAR BROWE IN THREADS BROKE IN THREADS BROKE TO THREADS CHARPY BAR DO DGEO TUNK
400°	4 5 1 2 3 4 5	3 нез	82)	91 102 921		44 43 40 44 39 41		_ 	21/2-9	3/1/8	DEFECT CHARPY
(
			-								

LOT BAR QCH YIELD TENS. BLONG. Re RC BEN CHAPTY LENGTH NO. TITLE ,0000 ,000 Z MASCO MICCO FE LD TINGES 450° 1	·. ·			,				-
2 35 352 18 50 75 1 - 614 5.06 SCALE. 35 46 51 1 - 1012 2 - DEFECTIVE CHARD. 450° 1 30min 76 53 53 1 10 114 10.2 2 10 14 5.06 5 4.00 51 14 10.2 53 16 114 115 10.2 53 16 115 115 115 115 115 115 115 115 115			YIELD TENS.		Rc BHN	CHARPY LENG		NT
450° 1 30min 76 33	45.0°			11	1			
450° 30min 76 53 70.25 53 22 10 1/4 10.2 2 10 1/4 10.2 3 4 73 53 526 1/4 10.2 1/4 10.2 1/4				152	50 75	1- 61/4 5		
2 3 67 70.25 53 2 0 14 102 31 102 31 11 11 11 11 11 11 11 11 11 11 11 11			35		-	1/2-	DEFE	CTIVE CHORP
4 50° 1 /HR. 104 77 53 114-2014 10.2 450° 1 /HR. 104 79.6 50 11.8 316 114-2014 22.31 DEFECTIVE CHARMY 316 22.31 DEFECTIVE CHARMY 316 22.31 DEFECTIVE CHARMY 316 22.31 DEFECTIVE CHARMY 314-3014 32.6 4 50° 1 2425 141 45 314-3814 32.6 4 50° 1 3HES 154 140 44 3914-3814 DEFECTIVE CHARMY 314-3014 32.6 4 140 147 147 147 316 22.25 11 9 41 140 140 140 140 140 140 140 140 140	4500	1 30mi		11 . 1 .	\	(1- 101/z)		
4 50° 1 /4R. 104 47 47 134-3014 20.31 CHARPY BAR JAMMER 49 44 44 344-3814 DEFECTIVE CHARPY BAR JAMMER 49 49 49 316 31/2-1874 20.31 DEFECTIVE CHARPY BAR JAMMER 49 41 41 31/4-3814 DEFECTIVE CHARPY BAR JAMMER 44 44 34 31/4-3814 DEFECTIVE CHARPY BAR JAMMER 44 44 34 31/4-3814 DEFECTIVE CHARPY BAR JAMMER 44 44 31/4-3814 DEFECTIVE CHARPY BAR JAMMER 44 44 44 44 31/4-3814 DEFECTIVE CHARPY BAR JAMMER 44 44 44 44 44 31/4-3814 DEFECTIVE CHARPY BAR JAMMER 44 44 44 44 44 44 44 44 44 44 44 44 44		1 1		15/0.251	_{{ · · · · · · · ·	2- 10-14	102	
450° 1 /HR. 104 47 47 47 47 2214 2231 CHARRY BAR JAMMER 49 49 49 49 49 49 49 49 49 49 49 49 49		4		53	1.63	11/2-1044		- 12-7-1-7-1
4 104 1996 50 11.8 3.6 21.57 DEFECTIVE CHARTY 450° 1 2425 141 45		5	. ==	53		1/4-2/4/	DEFEC	THE CHARY
4 104 1996 50 11.8 3.6 21.57 DEFECTIVE CHARTY 450° 1 2425 141 45	450			47		71		
450° 1 2405 141 45 316 212 DEFECTIVE CHARMY 450° 1 2405 141 45 31/2-1875 DEFECTIVE CHARMY 31/2-1875 DEFECTIVE CHARMY 450° 1 3405 141 45 31/4-381/4 5 140 44 44 31/4-381/4 5 154 140 44 31/4-31/4 2 149 140 44 31/6 - 21/2 22.25 11 4 4 140 140 140 140 140 140 140 140	(.	3		199.6 50	2 17.8	1-15791	9031 IN	Y BAR JAMMEL
450° 1 2425 141 45 (31/2-1874) 2 139 144 137.6 44 144 3.44 32.6 4 124 140 140 44 3.44 3.44 32.6 4 140 154 140 44 3.44 3.44 3.44 3.44 3.44 3.44 3.44			94	49	21 1	12775	DEFEC	FIFE CHARRY
2 139 139 137.6 49 44 3.98 414-384 32.6 149 140 44 44 3.14 32.6 140 314-104 150 154 126 140 14								
450° 1 3HES 154 44 44 314 32.6 DEFECTIVE CHAZAY 149 HAZE 44 (444 3.16) - 21/2 22.25 11 4 41 140 140 140 140 140 140 140 140	450°				[-\		DEFE	1 1 2 3 1 1 1
450° 1 3Hes 154 41 (31/4-104) DEFECTIVE CHAZOY 2 134 149 HAZE 44 (444 3-16) 27/4-2212 11 12 11		.3	149	137.6 4	4 744 3.	91 414-314	32.6	
450° 1 3HES 154 41 44 3-16 - 221/2 22-25 11 9 41 47 474 3-16 22-25 11 9 41				-) 1			PEF	ECTIVE CHALAY.
2 126 44 (444 3.16) 21 (22.25) 11 2 41 140 140 47 47 47 121 (22.25) 11 2 41	100					231. 54	DEF	crive" charry
4 140 47 121	430				4			
	*	. 3			11 12		22.25	ધ ઘ
5 192/ 44/ 3-13/) 1		1 / 17	4)	3 -13)	
	,							
	(·				* .			
					.			

BAINITIC	DUCTILE	TRON	PROJECT
MUTHIC TAO		T. 11.C.1	- 1100000

(•	2/1		CCITE	INCH	. 1057	<u> </u>		remerkation (i.e. in the particular in the parti
LOT No.	BAR No.	QCH TI:E	,000	TENS.	ELONG.	Rc Macro	Re Micro	BHN	T- UNN CHARPY Ft Lb	LENGTH INCHES	COMMENT
500	1 NBAN	30 m m	110_ 110 112_ 111 109_	126 122 124 158 152	1.5	45 49 49 50		325}	3 - 231/2 33/4 (171/2 33/4 - 331/2 31/1 - 23 12/1 - 301/2	27.56	BEFECTIVE CHARTY
500°	12345	IHR	10.4	126.4 144 148 183 169 186	20 2.0 2.0 2.0	47 45 46		3	3- 43 34-40 3-37 3-074		DOUBLE HIT CHARPY DEFECTIVE CHARPY DEFECTIVE CHARPY
500°	12345	2 HR	144.	202 203 203	2.5	47 44 44 45		2,06	3 -32 38 53/4-42 13/4 54 33/4 39	1/2 38	CHARDY JAMMED INMILLY DID NOT BLEAK IST TIME
500°]	340	137	2030 203 203 215	2.0 11.5	42 1 42 1 41 34	5.6 - 3	2.87	34-3	0 4 8½ 23 03/4	
5,00	0 1 2 3 4	441	701	108	3 1.0	3 8 - 41 0 35 0 43 4 4	.6		114- (8 1/2 7 1/5 12 1/4 8 1/2	DEFECTIVE CHARAY DEFECTIVE CHARAY DEFECTIVE CHARAY
<u>(</u>				123+	76	3,	9.6				

BAINITIC	בזנייוות	TRON	PROTECT
DVIVETTO	DUCLILL	LECH	FRUJECI

LOT No.	BAR No.	QCH TI:E	YIELD 000.	TENS.	ELCNG. Z	Rc Macro		вни	N- UNN CHARPY Ft Lb	LENGTH INCHES		COMMENT	
550°	1	30/11/10-	135	203	4.0	36			5-76				-
20 IN SALT	2		139	204	4.0	36			474-85%		<u> </u>	:	
	3		140	197	4.0	32			342-95%	1		:	
	4	<u> </u>	1148	210	4.0	36		1 -	1000	1	C P4	effet (HARPY
	5		136	200	3.5	30		4	P -851	45.31		4	
			139.6	202.4	3.9	34							
550°	1	IHE.	165	192	3.0	33			374-50	(,)			
H20 IN SALT	2		158	193	4.0	38			3/2-7	1			
,	3		135	173	9.0	25			512-80		Þ	efect c	HARAY
•	4		114	152	3.5	125			1175-81	Y ₂			!
	5	1	151	188		120	14		5	5/16	. 0	EFECT	CHARRY
	1	1	125	174.6		17				7 2		:	
550°	17	2 116		20.		30	,		41/4-0	3	-	٠	!
HAD TUSKI	- 2		169	1200	4 3.0	30	5		14-6	5			_
'(===	13	1	178						43/4-8	3		effer (/_
<u></u>	4	\neg	154						374			EFECT	GHANGRY
-	15	-	168				27		· / 4 -0	6/14			
	1		165.							7			i
550°		3 4	25 170	: 31	1 4.0	0 3,	2	1	91/2-0	36	•		
H202050			17		7 1				: 4 -	84		DEFECT.	TENSILE
	. 3		17	1 19		3	1		41/4-	65			!
	7	1	16	9 20	4 4.	3 3	3		434-	201/2	, !		1
	5	5	16	8 20	4 1.	5 3	5/3	3	H-31X	534/12	.t;		
			17	1.6 20		.3	7		:		• 1		
550	6	1 41	res 17	7 20			17		54.	5.3	;		
420 INS	ALT -	2	/8				4		41/2	52	;	1	······································
14		3	16				34	_		8.3	· ;	1	
		4		8 20			37		41/2	41.0	25	1	
		5					36/	7	13	(21)		DEFECT	CHARMY
	_	-				-9	11	6				1	
	_			<u> </u>			- **		_		•		
-(-			 									1	
•	-+			 -								1	
7	-+												
			-; -										

: :

					I		T			Tat		• •
	LOT No.	BAR No.	QCH TIME	,000	TENS.	ELONG.	Rc Macro	Re Micro	вни	CHARPY Ft Lb	LENGTH INCHES	COMENT
	600.	1.	30min	153	205	9.0	41			54-110		
_	Reco	2		161	206	4.0	41			5/2 -79		
C	ZYFIRIY	3		150	199	4.5	37			5/2-965		
		4		157	204	4.0	40			1////		
		5		157	204	5,0	40/			20195		
		* ****		155	204	4.3	140					
	6000	1	/HR.	164	204	4.0	19.8 40		·	1-31 -100	··- · ·-	
	Reco	2	,	170	204	5.0	39		: •	534-105	·- · ; ·	
Cá	DI FIRE	3		165	204	4-5	40		·	534-34		
_		4		166	202	500	40		 	43/1-17/		
	·	5		163	203	4.5	30	 -		5.4 36		
				163	203	1.3	38	.4:		<u>.</u> i		
	600.	1	ZHES	168	204		20	·	· · · • · ·			
	DECO	2	ا مج ۱۸ جم	163	196	5.0	39			5,-89	•	
	FIRM	3		169	203	4.0	35 38			5/2-102		
٠,	,-1,,,,-	4		165	198					5/4-115/		
		5			203	1.5	39			374 100		
		J	-	1686	200	5.0	40/	8.2				
	6000	1	המונה		194		2.5	Ĭ	.			
	REDO	2	3HRS.			3.5	36			41/2-98		
,	MFIRM	3		166	195	4.5	39			1934-74	:	3
L		.~		170	203	4.0	39			41/2-90		
		5		173	J03	4.5	38			46 37		
	·	۵		165	1977	2.5	38		:			
	1000	٠,٠	2.	168	•	42						* * **
	600°	1	9 HRS	165	199	9,0	39		-	4-115%		· · · · · · · · · · · · · · · · · · ·
	Réco	٤		173	503	900	37			434-79	:	* ***
11	MFIRIN	3		169	203	510	39			4 04		
		4		168	201	50	39	ノ		11.5/9	· '	
		ર્ડ		165	198	4.5	38/		_			
			-	108	200.	/W5.	31					
	(.						٠.		,			
			·						· . •		- · .	· · · · · · · · · · · · · · · · · · ·
				;				,				
										1		
				•				-	٠.			
	• 1		77	T - 1		:				l ,	li_i	, `

(•
LOT	BAR No.	QCH TI:Œ	YIELD	TENS.	ELONG.	Rc Macro	Rc Micro	BHN	N- UN-N CHARPY Ft Lb	LENGTH INCHES	COMENT
650°.	2	3CAVA	142	183	6.0	33			5-341/2	m	
	2345		\$137 133	181	5.5	34	N	1	3/2-364	9	i
650°	5	THE	138	181	6.0	34		-	5 -311	٠٠.	
v .5 :	1		144	180	6.0	1 .			5-50/		
	345		195	1.80	7.0	29	3	_	51/2-39	46	
• • · · · · · · · · · · · · · · · · · ·	3		17.6	179	7.0	. سا			5/2-(6		
650	1	ZHRS			7.0		; :		S/2 (F		DEFECT CHARPY
(231		146	178	7. 0	5 27	7 36	1	51/2-3	2 3	
e La participa p	1345		146	179					5 -8		
650		- 3HR							5/2 (3		DEFECT CHARPY DEFECT TEUSILE
	23		× 140	6 17	7 88,0	o 3.	/ 8		15/2 G	图》	DEFECT CHARPY DEFECT CHARPY DEFECT CHARM
	345	' } .	14:						51/2 (3		
650		11/4		7 /8		- 1	2		5/2-0	5 4	DEFECT CHARAY
•	2	3	A 15	0 18	1 1/2	5 3	7 1		6 5/2		DEFENT CUNRAL
		5	14	9 18		1	27		5/20		
								-			
1		1	77 1: "		·* : }	. !	[٠ ١			properties to the second

•				·							
LOT No.	BAR No.	QCH TI:E	YIELD	TENS.	ELONG.	Rc Macro	Rc Micro	BHN	N-UNN CHARPY Ft Lb	LENGTH INCHES	COMMENT
700°	12346	3Cmis	122 120 121 119 122	158	8.0 6.0 7.5 7.5	28 19 23 28 29	17-4	6	6-79 51/4 69: 151/4-81 161/4-331 16/4-76	-	
7000	1 2 3 4	IHR.	124 1125	161	11.5	29 27 27 28	28-	6	- 62 61/2-65 61/4-61 5-60		DEFEOR CHARMY
700°	5 12345	2 Hes	123 130 129 127 128 120	162 160 154 162 156	9.5	39 31 37		6.1	64-93 54-31 512-31 64-00 612-5		DEFECT CHARTY DEFECT CHARTY DEFECT CHARTY
700.	12345	34R S		158	8.5 9.6 9.0 9.5	26 26 30	25.6	6.	4 6 19 6 - 19 4 6 12 - 9 6 12 - 9	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DEFECT CHARAY
700	12345	4HC	130 130 130 138 138	161	9.0	28	3 7.2	(842 845 645	

		•						
		•					•	
(BAINITIC	OUCTILE IRON	PROJEC	<u>.</u>		
LOT BAI	R QCH	YIELD TE	NS. ELONG.	Rc Rc	BHN C	- UNW HARPY LI	ENGTH	COMMENT
No. No.	. TIRE		000 Z	Macro Micro	5	Ft Lb	INCHES	00.2.2.
7500 1	3 Cmin		37 7.0	25	1			
2 3 4 5	;	104	137 70	25		12-8892 X	<u> </u>	•
3	×	102	38 8.5	25,	9 1	1208		DEFECT CHARTY
. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5	104	142 9.0	25	· 1 · · - [·	12-6712		
			N.	+ 900				
750° 1	IAR.	107 1	138 7.0	25		7 100		DEFECT CHARTY
2	-		138,80	24	-	12-134	<u>M</u>	
3	· 🖔	107	14/ 29.5	1 1	i	14-19	g	:
3 4			140 9,5 139 8.5	24)		712-86 634-103		
-, -, 3	' {	103	139. 6.5	124	-	4100		7 17 1
7500 1	2 Hes	105	143 8.0	25%		5400	S	DEFECT CHARTY
2	2	108	144 7.0	256	- 5	41/2-67	Ķ	1
(3	3	81108 H	144370	1 1	1	174-34	89	DEFECT CHIMERY
		~	143 6.0	126		5 - OPE	P	BLI 201
	5 .	115	138 5.	0 26	. -	414-60%	•	
750°	1 3 He	5 109	146 5.	5 26		34-34		1 1 1 1 1 1
	2	109	145 5.5			3 0	1.	DEFECT CHARLINY
	3	9/1/	148 \$ 5.0		3	23/100	8	DEFECT CHARAY
	4		[/73 S			34 (1)	∛	DEFECT CHARRY
	S .	111	151 6.	0 24		Li XET	4	
7500	1 4112	5/12	146 4.	0 25		13 66		DEFECT CHARPY
/3	1 -	1/13	151 4.	1 41		14.6	Í	DEFECT OHMEN
•	2345	n 114	148 3.	5 24		3 - 25	30	
	4	114	144 3.	5 24	·	13/4 6	3 '	DEFECT CHARRY
	5	113	150 4.	1 1	- 1	2/4-8.	2	
					. }			
(}					.	-	
	1		Suspe	ch 75	Ö	Jani	-	
					_		1	
					-			

LOT No.	BAR No.	QCH TI:Œ	YIELD	TENS.	ELONG.	Rc Macro	Rc Micro	3HN	N- UN CHARPY Ft Lb	LENGTH INCHES	COMENT
80°°	1 2 3	30mm	76	125	8.0	27	,,		6 5-120+		
	345		776	126	7.5	24	N N		5/4/13 5/4-77 434-120-	120 +	
800°	1	/ HR	102	137	5.0	4			21/2		DEFECT. CHOCKY
	2		102	142	5.0	25	24.6	- W	1-01	7 i	DEFECT. CHARPY
•	345		100	134	4.5	25	1	1 1	24-45	42	
8000	1 2	ZHRS	101	137	4.0	23	ن		(3) (20) 134 - 38		DEFECT CHORRY
<u> </u>	34		3	136	\$4.5	(L)	- 01	*	134-20	28.3	
	5		12.5				-		134-31		
800		3425	100	135	4,5	リ は3			2- 2		DEFECT CHARP
· · · · · ·	2345	-3		\$135		22	22	8		1/2 3.8	
	5		102				7		2~ 3.		
800	3	9HE	101	190	3.5) 23	3		2-34-26	1/2	DERECT CHAR
	4		2 109	13/35	5 1×4-1 1×3.1	2 2	1 1		V2-3	8	
	5		103	3 133	3 3,3	5 2:	3		p- 30)/2	_
(-							-		•	
,, ar rig,			_								124
		-	.			. }		.	1		-: 1

APPENDIX C PHOTOMICROGRAPHS OF STRUCTURES RESULTING FROM VARIOUS HEAT TREATMENTS

BDI Quenched at $400^{\rm O}F$. The sharp needle-like structure indicates a high proportion of martensite accounting for the high hardness and low UTS. X 800

BDI Quenched at 500°F. Here the sharpness of the needles is replaced with the feathery structure of bainite. The UTS increases and the hardness decreases. X 800

BDI Quenched at $600^{\rm O}F$. The feathery structure of bainite has increased to where it almost entirely fills the matrix. This is characteristic of good quality BDI. X 800

BDI Quenched at 700° F. The light areas are retained austenite which contributes to the lower hardness and greater toughness of this structure. X 800.

BDI Quenched at 800° F. The retained austenite has become more pronounced also some areas of pearlite. The structure is,in fact, getting back to a pearlitic nodular iron of very fine structure and has the physical properties to go with it. X 800

APPENDIX D

TEMPERATURE CHARACTERIZATION

OF BDI

FROM -60° to 230°F

TEMPERATURE OFFREDERIZATION

r				BAI	SITIC I	UCTILI	IRON	PROJ	ECT		
		HES						1	1		1
LOT No.	BAR No.	QCH TIME	,000	TENS.	ELONG.	Rc Macro	Re Micr	BHZI	CHARPY Ft Lb	LENGTH INCHES	COMMENT
/	/	2.5	/37.5	164.7	4.5	<u> </u>			117.5		Pruso W/O JACKETE
	2			172.2	7.0	1/	<u> </u>	1	94	<u> </u>	<u> </u>
-60F	3	1	· · ·	171-7	5.0			1	87	793.7	
	4	15	1	169.3	5.5	11		1	84	<u> </u>	
<u>. </u>	5	/			7.5	<u> </u>	 	1_	186	1	
		1)	AUF	170.4	ļ	 	↓			<u> </u>	' '
. 2				180.8			1		2500	 	<u> </u>
•	2	1	↓	173.7			<u> </u>		47	ļ	
731°F	3	1	<u> </u>	177-0			4		120+	<u> </u>	UN BROHEN
	4	1	1	179-3					84-5	`}	
	5	1/	<u> </u>		5.0			_ _	53	<u> </u>	
	<u> </u>	1->	AVE			-			76		
_3	1	1/			5.5				66		
	2	1		177-2					34		
	3	1-/			155				120 +		UNIPROHEN
-10°F	4				0 9.0				120+		
	5	1)	4		2 5-5				62.5	·	
		1/	AUE	174"					92		
		1		157.					120		
	2	- -)		160.					80		
	3				8 5.5				120		UNPAROKEN
35°F				165				_	1-65		
***************************************	5			164					1/20		
•	. 		Au.						110		
. 5	1 2			3 170-					<u> جعر</u>		
				0 168-					120		UN BROKEN
720	 3		136						60		
12		;-	138	8 172			\dashv	-+	54		
•	- - 		158			5	-+		74.		
6		1 779	1 1-1	-101	4	-	-+	\dashv			-
(2	(-)	1		1		\neg			
-		3	`	- -			_				
		4	1				$ egthinspace{-1pt}$				
			_					~			

::

	• • • •	•	•					Peter				
(. •	.	· :.	BAI	PERF	OUCTILE	IRON	PROJ	ECT	E/C) ZA T/		
LOT No.	BAR No.	HRS QCH TI:E	YIELD	TENS.	ELONG.	Rc Macro	Rc Micro	вни	CHARPY Ft Lb	LENGTH INCHES	COMMEN	r
6	. /	2.5		167-7	8.0			1	95			ę
	2			167-7	7.5				57	}	·	
170°F	3			166.3	8.5				105		:	
	4			164.3	80				120+		UNBRU	HEAL
,	5			169.5		Ī			70			
			AVE.		7.8				97.5			
.7	1			168.7	6.0				75			
4	2		<u> </u>	168.0	7.5	<u> </u>	<u> </u>	<u> </u>	101	<u> </u>	<u> </u>	<u> </u>
230°F	3			168.5	7.5			!	110	1 1		
	4			166.5	7.0		1	:	180			
	5			165-2	7.5				سختكسا			
			AUE	167.30					91.5	-		
												. 1
						<u> </u>						
		Ì				1						
									:]			
									t			
					•							
											:	! ;
										;	!	
	1		No	76:	CHA	epy	MA	rester	TE UI	7 15	12017	1bs
	1											
											;	
4	1			1			_			^	: 	· · · · · · · · · · · · · · · · · · ·
-	1		1	1		\neg	_	_ _	_		: 1	
	+-	_			_		_				7	
	1-	7		1	1-	\neg	$\neg \vdash$	_				
	+	 		_†		_	_					
	1	_	_		\neg	\dashv	$\neg \vdash$	_			-	
(1	_	_			\dashv	_	1				
-	1			_				_		_		
		_	\neg		_	_					-:-	
<u> </u>		- 		_	_	-		-				
												

APPENDIX E

EFFECT OF HIGH MOLYBDENUM

.

RE-HEAT-TREATMENT ON MECHANICAL PROPERTIES

NOTE: Hardness shown is apparent or macro hardness.

Actual hardness as measured by Brinnell hardness tester will measure 5 to 7 points harder.

E4

<u> </u>											
LOT No.	BAR No.	QCH TI:E	YIELD ,000	TENS.	ELONG.	Rc Macro	Re	вни	CHARPY Ft Lb	LENGTH INCHES	COMMENT
760°	1-2	30m/L	117	149	3.5	34			12-78		DEFECT CHARPY
1% FEMa	3-4 5-6								(A) (A)	\·	DEFECT CHARPY
	7-8								76 341	ď	DEFECT CHARPY
	9-10						-	1.	95-107		Derzot Charly
	1 / 2	-					1		7	1	
700°	1-2	1HR.	124	154	515	33			1204-108		
. 4% FEM.	3-4								Q0-64		DEFECTCHARRY
	5-4								30-94	3	DEFECTCHARDY
1	7-8							_ _ !	13-71		DEFECT CHARY
	9-10							_]	1134:90	105	
	1 .						. ,	_	-		
700°	1-2		126	158	8.0	_ 32	-		28/2-10		DEFECT CHARPY
AP FEM	3-4				-				- 61/2 10		
	5-6	1 .	1 1.	1						}	DEFECT CHARPY
	7.8			1 .	:		1	-	12 00		DEFECT CHARPY
	19-10	٠ ١		1	. :	1	1		120+99	977 :	· -
7000	1-2	3#6	130	154	513	3	2		89-6	3	Ne co - O Inany
NIC	1 3 - 4	2 3#2	128	. \ \ \ . \ .	3.	7 3-	<u>-</u>		19-6		DEFECT CHARPY
17.010	5-6		-		'				92-5		
	7-4			-		- -	-		94)6	- 1	DEFECT CHARDY
	9-1		- -	1	. .	- -		· · · ·	68-7	J	Descent
	1'	"	`\	1		1		·		Z 77 :: -	1
700	1/2	2 AHA	25 12:	3 /50	8.9	5 31			300	3	DEFECT CHARPY
.4%. Fall	10 3.			1		- 1	1	1	73-1		
•••	. 50		1	1	- '	1		·	98-8		
	1	- 1				- 1		.	98-Q		DEFECT CHIMERY
	7.1			- }	į	- }			1201-	87 46.	7
	9-,	10		- {							
6 -				.	- }						
C.			.			.					
					1		\				
				_				_			4
	.	l	: [i	- 1	ł	l	ł	l i	i i	

HOURS IN SALT QUENCH AT 700° F. REHEAT-TREATED, AUSTENITIZED AT 1700°F

NOTE: Hardness shown is apparent or macro hardness.

Actual hardness as measured by Brinnell hardness tester will measure 5 to 7 points harder.

EFFECT OF TIME IN QUENCH ON CHARPY IMPACT - NOTCHED AND UNNOTCHED AND HARDNESS

REHEAT-TREATED, AUSTENITIZED AT 1700°F

		• • •			
:			•	•	••••••••••••••••••••••••••••••••••••••
(BAINITIC DUCT	TILE I PRO	JECT .	e de la companya del companya de la companya del companya de la co
				IN- UA	· .
LOT BAR	QCH YIELD .000	TENS. ELONG. Ro	e Re BHN ero Miero	CHARPY LENGTH Ft Lb INCHES	COMENT
17000 1	30mm 108		9	6/2-58/2	
700° 2 Repo 3 4 5	1/2			64-37	
REDO 3	106	147 55 3	0	62-41	
14		146 6.0 2	91	5:57	DEFECT CHARNY
	1/2	147 5.0 3	20.8	(3) (3)	
760° 1	14R. 114		29	7-650	DEFECT CHARMY
Reso Z	115		28	C34-83	
		153 9.5	29	64-95	
	110	15/ 9.5	30	17/403	DEFECT CHARPY
5	1/0	156 10.3	292	674-674.6	
700°		152 8.5	29	11/1/11/11	DEFECT CHARTY
	2 JHES /21	153 10.5	29	7 .92	
			29	734-73%	
	4 1/18	153 9.0	28	6/2-94	
	1/2	157 9.3	30/9	172-877 86.75	
700.	1 34RS /2.		30	7-00	DEFECT CHARTY
Reas	! ! .		28	1/2/3	DEFECT CHARA
	2 /2 3 /2 4 // 5 /3	1 156 8.0	27	63405	DEFECT CHARRY
	4		29	(4)-99	DEFECT CHARTY
	5 /	1 151 8.5	2926	73/86	
7000	1 Apres 12	. 1 1 .	28	6343812	
REDO		3 153 9.0	128	51/2-	* ***
	2 12 12 13 4 5	4 155 9.0 10 155 9.0 157 9.5	29	7-10-4	
1	34 /2	4 155 9.0 0 155 9.0	29/2	1 17 (24)	DEFECT CHARAI
	5 15	157 9.5	27/201	7 41 37	· · · · · · · · · · · · · · · · · · ·
		1 154 94		6.65	
(- 1				1	
					and the second second
· - ; .	1 : 21 1.			$A_{i,j}A_{i,j}\in A_{i,j}$	1 11
	•				

APPENDIX F

FIRST STATIC EXPERIMENTAL

STRESS ANALYSIS

STRAIN GAGE POSITIONS AND DATA

STRAIN U IN/IN															
Load	11	2	3		5	6	7	8	9	10	11	12	13	14 -	15
5000	384	176	389	259	-3	226	21	-174	18	20	-435	-214	0	-113	-86
10,000	701	361	790	521	-9	445	66	-333	82	46	-874	-445	-9	-224	-157
15,000	1000	544	1184	779	-10	667	108	-483	158	123	-1311	-680	-8	-333	-232
20,000	1297	716	1555	1039	-10	892	153	-602	227	218	-1750	-912	-3	-439	-304

BAINITIC NODULAR IRON REPORT

DISTRIBUTION LIST

Defense Technical Information Center ATTN: TIPDR	12
Cameron Station	
Alexandria, VA 22314	
Commander	
US Army Material Command	
ATTN: AMCDRA-ST	
AMCMT	1
5001 Eisenhower Avenue	1
Alexandria, VA 22333	
The state of the second	
Commander	
US Army Materials and Mechanics Research Center	
ATTN: AMXMR-D	
AMXMR-M	1
AMXMR-S	1
	1
AMXMR-PH	1
Watertown, MA 02172	
Commander	
US Army Tank-Automotive Command	
ATTN: AMSTA-R	1
AMSTA-RC	1
AMSTA-RCK	1
AMSTA-RCKM	5
AMSTA-CR	1
AMSTA-TSL	2
AMSTA-G	1
AMC?M-GCH-S	1
Warren, MI 48397-5000	
Mar. Toro B. T. Co. I	
Mr. Jay F. Jamowak	1
Manager of Foundry Development	
Climax Molybdemum Co.	
P. O. Box 397	
Arlington Heights, IL 60006	
N-m 1311 - 0 -	
Hayes Albion Corp.	10
601 N. Albion Street	
Albion, MI 49224	
Coneral Durantee Land Coneran Di Li	
General Dynamics Land Systems Division	1
General Dynamics Corporation	
Mail Stop 424,-05-03 P. O. Box 1901	
Warren, MI 48090	

Mr. Dale H. Breem Director	1
Gear Research Institute	
P. O. Box 353	
Nopierville, IL 60566	
Commander	
Air Force Materials Lab	
ATTN: LTM	1
LLN	1
Wright-Patterson AFB, OH 45433	
Naval Material Command Code CMT 0424	1
Washington, D. C. 20360	
HQ, Dept. of Army	
Deputy Chief of Staff	
for RDA	
ATTN: DAMA-ARZ-E	. 1
Washington, D. C. 20310	-
Commander	
Rock Island Arsenal	
ATTN: SARRI-ENM-T	1
Rock Island, IL 61299	•
Commander	
US Army Industrial Resources Office	
ATTN: Code 044	1
Philadelphia, PA 19112	_
Director	
US Army Industrial Base Engineering Activity	
ATTN: AMXIB-MT	1
Rock Island Arsenal	